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Quantized eigenstates of a classical particle in a ponderomotive potential

I.Y. Dodin and N.J. Fisch
Princeton Plasma Physics Laboratory, Princeton, NJ 08543

(Dated: November 12, 2004)

The average dynamics of a classical particle under the action of a high-frequency radiation re-
sembles quantum particle motion in a conservative field with an effective de Broglie wavelength λ
equal to the particle average displacement on a period of oscillations. In a “quasi-classical” field,
with a spatial scale large compared to λ, the guiding center motion is adiabatic. Otherwise, a parti-
cle exhibits quantized eigenstates in a ponderomotive potential well, can tunnel through classically
forbidden regions and experience reflection from an attractive potential. Discrete energy levels are
also found for a “crystal” formed by multiple ponderomotive barriers.

PACS numbers: 52.35.Mw, 03.65.-w, 52.25.Dg

Under intense high-frequency (rf) radiation, a charged
particle undergoes fast oscillations superimposed on the
average drift motion. If the particle drift displacement λ
on a period of these oscillations is small, that is if

λ� L, (1)

where L defines the spatial scale of the field, the particle
dynamics remains adiabatic. The average effect of the rf
drive can then be approximated with an effective poten-
tial, known as the ponderomotive, or Miller potential [1].
This paper shows that at larger λ, when the approxima-
tion of a conservative force becomes invalid, the motion
of a guiding center resembles dynamics of a quantum ob-
ject, unlike the classical particle adiabatic motion. For a
related problem, namely, the guiding center dynamics in
a nonuniform magnetic field, this analogy was previously
drawn by Varma, as reviewed in Ref. [2]. However, the
explanation of the “macroquantum” effects in terms of a
quantum-mechanical wave function remains controversial
[3].

In our paper, in contrast to quantum approach [2], we
show that purely classical systems exhibit quantum-like
effects. Compared to the classic quantum problem, where
the particle is a wave packet and the potential is sharply
defined, here, the true particle is a point object, but the
“potential” is a wave packet. However, we show that a
guiding center can be treated as a quantum-like object,
to which the sharply defined Miller force (rather than the
true Lorentz force) is applied. In particular, we show that
an rf-driven particle exhibits quantized eigenstates in a
ponderomotive potential well, can tunnel through “clas-
sically forbidden” regions, and can experience reflection
from an attractive potential. We also show that discrete
energy levels exist in a “crystal” formed by multiple pon-
deromotive barriers.

For simplicity, consider an rf field applied over a uni-
form dc magnetic field, so that the adiabatic potential is
given by [1, 4]

Φ =
e2E2

4m(ω2 − Ω2)
. (2)

Here we assume a linearly polarized rf field Erf =
x0E(z) sinωt perpendicular to the magnetic field B0 =

z0B0, with gyrofrequency Ω = eB0/mc close to the fre-
quency of the rf drive, i.e., Λ ≡ (ω/Ω − 1)−2 � 1. In
a potential (2), the particle guiding center experiences
conservative motion if

λ = 2πvz/(ω − Ω) (3)

remains small compared to the characteristic scale L of
the rf field profile E(z), as required by (1). In this case,
averaged over the rf period 2π/ω, the Larmor period
2π/Ω, and the beat period 2π/(ω−Ω), two adiabatic in-
variants of particle motion are conserved. Those are the
magnetic moment of free Larmor rotation µ = m(v⊥ −
v∼)2/2B0 and the quasi-energy of the particle motion
along a dc magnetic field line E = 1

2 mv
2
z + µB0 + Φ.

(Here v is the particle velocity, and v∼ is the velocity of
rf-induced particle oscillations transverse to B0.)

Suppose now a particle confined by the potential (2)
in the vicinity of its local minimum. In the adiabatic
approximation, such a particle experiences conservative
bounce motion described by the equation z̈ = −Φ′(z).
However, bounce oscillations remain conservative only
approximately for finite λ/L. Each time a particle
bounces off a ponderomotive wall, it either gains or loses
energy, depending on its velocity v0 at the bottom of the
well. (Similar nonadiabatic energy exchange was studied
in a number of theoretical [5, 6] and experimental [7, 8]
papers.) If for some v0 the energy gain over the bounce
period is precisely zero no matter what the phase of the
particle, the particle can be thought of as occupying a sta-
tionary eigenstate of a ponderomotive well, as its motion
remains strictly periodic regardless of nonadiabaticity of
interaction with the rf field.

In this paper, we report analytic and numerical iden-
tification of such eigenstates and describe their structure
in the simplest case of an even potential Φ(z) in a sub-
class of bounce oscillations with v⊥(z = 0) = 0. To do
so, let us first introduce the following dimensionless no-
tation. We measure the frequency ω in units Ω, the time
– in units Ω−1, the particle velocity – in units c, the spa-
tial coordinates – in units c/Ω, and the electric field – in
units mcΩ/e. Solving for the perpendicular motion

ẇ + iw = E sinωt, (4)



2

where w = vx + ivy, one gets w = ψe−it, where, to the
leading order in Λ,

ψ =
i

2

∫ z

0

E(z̃) e−iχ(z̃) dz̃

vz(z̃)
, (5)

and χ(z) = (ω − 1)
∫ z

0
dz̃/vz(z̃). Averaging over the fre-

quency ω ≈ Ω, we get [5] for the longitudinal motion:

z̈ = −Φ′(z) − φ′(z), (6)

where φ(z) is a quasi-potential vanishing in the adiabatic
limit (1):

φ(z) = − 1
8(ω − 1)

∣∣∣∣∣
∫ z

0

E′(z̃) e−iχ(z̃) dz̃

∣∣∣∣∣
2

. (7)

For clarity, assume E(z = 0) = 0 and ω > 1 (ω > Ω in
dimensional units). A particle starting with vz = v0 at
the bottom of the well z = 0 will be decelerated by the
rf field, come to a stop at a turning point z(t = ts) = A,
and be reflected backward. Since particle motion may be
nonadiabatic, the trajectory after reflection generally will
not be symmetric to that before the reflection. However,
it might be possible that the symmetry does exist for
some v0. Having such a case requires that φ(z(t)) is an
even function of t − ts, which is equivalent to

arg ψ(A) + χ(A) = πn, (8)

where n is an integer. If this condition is satisfied, the
particle is returned to z = 0 with the longitudinal and
transverse energies precisely matching their initial values
E||,0 = 1

2
v2
0 , E⊥,0 = 0. If Φ(z) is even, the phase-space

trajectory of such a particle will form a closed loop on
the plane (z, vz) (Fig. 1). In contrast to other particles,
those with v0 satisfying the condition (8) are not heated
by the rf field despite undergoing nonadiabatic motion.

Eigenstates of a ponderomotive well are quite similar
to those of a quantum particle in a true potential. Indeed,
a particle with a proper v0 will remain on a stationary
“energy level” regardless of the initial rf phase. Hence,
for an ensemble of particles with equal v0 but different
phases, the structure of an eigenstate will determine the
probability of finding a particle at a certain location z.
Extending the analogy, let us simplify the quantization
rule (8) to the “quasi-classical” limit. At n � 1 Eq. (8)
yields an approximate solution (ω − 1)ts ≈ πn. For a
particle at a stationary eigenstate, vz can be considered
a single-valued function of z. Hence, extending the inte-
gration from a quarter to the full bouncing period, the
quasi-classical limit of (8) reads∮

k dz = 4πn, (9)

where k = 2π/λ. Eq. (9) is analogous to the Bohr-
Sommerfeld quantization condition for even energy lev-
els E2n of a quantum particle in a potential well. (Also,

analogously, at n � 1 the velocity vz can be approx-
imately calculated according to the adiabatic model.)
Thus, to allow stationary bounce motion in an rf field, the
amplitude of particle oscillations A may not be less than
the effective de Broglie wavelength λ0 = λ(v0). Assum-
ing that the field has a spatial scale L, the total number
of levels can be estimated as L/λ0, and the ground en-
ergy level E1 can be expected at A ∼ λ0, hence satisfying
the order-of-magnitude equation E1 ∼ Φ(

√E1Λ).
As an example, let us consider E(z) = q|z|α, q = const,

α > 0. By approximating z(t) with a parabolic function
on a half of a bounce period, one can rewrite Eq. (9) in
a more precise form

∮
k dz = 4π (n + 1

2
α). Correspond-

ingly, the “quasi-classical” energy spectrum is given by

En = Ê
(
n+

α

2

)2α/(1−α)

, (10)

where Ê depends solely on the parameters of the field:

Ê =
1
2

{
qΛ

1
4

2

[√
πΛ

Γ(1
2

+ 1
2α

)
Γ(1 + 1

2α
)

]α }2/(1−α)

. (11)

Hence, En increases with n if α < 1. In this case, all the
energy levels lie above Ê, and the quasi-classical limit is
approached as v0 → ∞. On the contrary, when α > 1, all
the eigenstates have energies below Ê and become quasi-
classical as v0 → 0. (At α = 1, which would correspond
to a linear pendulum in the adiabatic limit, degeneracy
is observed: in this case all trajectories are self-similar,
and the time ts is independent of v0.) Such a difference
between the two cases is due to the fact that a profile
E(z) ∝ |z|α does not have an intrinsic spatial scale, which
is thus effectively determined by the amplitude of the
particle bounce oscillations A ∝ v

1/α
0 . The adiabaticity

condition (1) with λ given by (3) then can be put as
(v0/v̂)α−1 � 1 (where v̂ =

√
Ê), which is satisfied for

v0 � v̂ if α < 1 and v0 � v̂ if α > 1 (Fig. 2).
Quantization of stationary energy levels of particle mo-

tion confined by a ponderomotive force resembles that of
a quantum particle in a potential well and has a similar
nature. Analogously to a quantum object, the particle
guiding center is not a zero-dimensional entity but can
be assigned a phase, which is the phase of a real particle
oscillations in an rf field. The distance λ, which deter-
mines the “uncertainty” of the guiding center location,
can be naturally treated as the effective de Broglie wave-
length of the latter, and the approximation of a local
Miller force remains applicable only if the guiding center
coordinates are well defined. What is remarkable is that
this “quantum” analogy can be extended further and ap-
plies also to a freely moving (non-confined) particle. In-
deed, the longitudinal force acting on a guiding center is
the average Lorentz force proportional to the transverse
particle velocity. If a particle incident on a localized rf
barrier is fast enough, as given by (1), it will not have
sufficient time to gain transverse energy from the field.
Hence, it will neither experience significant ponderomo-
tive acceleration. Such a particle will then be able to
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FIG. 1: First five stationary eigenstates of a guiding center trapped within a ponderomotive potential formed by an rf field with
the amplitude E(z) = q|z|α with α = 0.6, q = 10−3: (a) phase plane (z, vz), (b) perpendicular energy E⊥(z) (vz is measured in

units v̂ =
√

Ê; E⊥(z) is measured in units Ê√Λ [see Eq. (11)]).

FIG. 2: First five energy levels En [dashed – numerical; solid gray – quasi-classical, given by Eq. (10)] of a guiding center
bouncing within a ponderomotive potential Φ(z) (solid black) formed by an rf field with the amplitude E(z) = q|z|α: (a)

α = 0.6, q = 10−3; (b) α = 1.4, q = 2 × 10−4 (En and Φ are measured in units Ê).

penetrate (“tunnel”) through the “classically forbidden”
region 1

2
v2
0 < Φ(z), just like a quantum particle having

a de Broglie wavelength of the order of the field scale.
The depression of a ponderomotive force (in compar-

ison with the adiabatic model) in the vicinity of a cy-
clotron resonance is confirmed in our numerical calcula-
tions, and was reported also in Refs. [7]. What has not
been reported yet is that “quantum” properties are also
inherent to attractive ponderomotive barriers (Φ < 0),
which appear to be capable of reflecting particles. First,
note that Eq. (6) yields a theorem [5]

∆E|| = (ω − 1)∆E⊥, (12)

which connects the integral changes of longitudinal and
transverse energies of a particle at t → ∞. In the adi-
abatic limit, the energy change (12) remains exponen-
tially small with respect to ε ≡ λ0/2πL. Suppose though
that ε & 1 and Φ < 0, meaning that ω < 1. Since
∆E⊥ > 0, in this case a particle loses E|| as a result of

interaction. At some v0 = vz(t → −∞), this decelera-
tion can become sufficient to trap a particle in a potential
well: a particle entering the rf field freely can be deceler-
ated inside and bounced back toward the stronger field
at the exit (Fig. 3). It can be shown that the trapping
condition (also checked numerically) can be written as
ε̂ ≡ λ̂/2πL & 1. That is, if ε̂ & 1, at sufficiently small v0
a particle may be trapped within a potential well, but if
ε̂ . 1, trapping is impossible regardless of v0. This can be
explained as follows. Slow particles (v0 � v̂) are acceler-
ated ponderomotively up to the velocity of the order of v̂.
If the latter itself is large enough (ε̂ & 1), nonadiabatic
effects have to reveal for all, even initially slow particles,
some of which may then experience trapping. On the
contrary, at ε̂ . 1, slow particles remain adiabatic and
hence cannot be trapped. As for fast particles (v0 � v̂),
in both cases they have enough energy to overcome the
ponderomotive deceleration and avoid trapping.

What is the “destiny” of a “once trapped” particle?
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FIG. 3: Longitudinal velocity vz vs z for a particle being
trapped and released by an attractive ponderomotive poten-
tial with ε̂ = 3 (vz is measured in units v̂; E0 = 0.001,
Λ = 104, L = 0.33; the initial magnetic moment is equal
to zero): vz = 0.30 v̂ (black) and vz = 0.31 v̂ (gray).

Because of the phase space conservation requirement,
particles may not stay trapped forever. However, if the
number of bounce oscillations within a potential well is
large, the post-trapping dynamics of a particle correlates
little with its pre-trapping dynamics. Hence the direc-
tion, to which the particle is released, is almost uncorre-
lated with the initial velocity (Fig. 3), and a particle can
escape toward the direction opposite to v0, which qual-
ifies as reflection. The effect disappears under the con-
dition (1), and again resembles a quantum phenomenon
when a particle can be reflected by an attractive potential
if having de Broglie wavelength of the order of L.

Because of clearly stochastic behavior inside a pon-
deromotive well, a particle traveling through a chain of
such potentials would undergo a random walk, as each of
the potentials can scatter a particle back and forth with
roughly equal probability. Hence, a sufficiently long chain
of ponderomotive barriers violating the condition (1) acts
like a diffusive mirror. However, among v0, for which
stochastic dynamics is realized, there exists a countable
set of regular trajectories, at which a particle can “col-
lisionlessly” travel through a “crystal” formed by multi-
ple barriers. These trajectories can then be attributed
as stationary eigenstates of a free particle moving in a
“ponderomotive crystal”, which has a well-known quan-

tum analogue in the physics of solid state. Such eigen-
states (Fig. 4) we found numerically for chains of both
attractive and repulsive potentials. Similarly to bounce
oscillations within a potential well, the ground energy
level (n = 1) of a transmitting particle is located at
v0 ∼ v̂ ∼ √|Φ|max. Higher levels (n > 1) are located at
larger energies, and at n � 1 (corresponding to v0 � v̂)
the particle motion becomes “classical”, that is, in this
case, only slightly disturbed by the ponderomotive force.

The quantum-like effects run counter to what follows
from the adiabatic theory predicting regular determinis-
tic dynamics to all orders of ε. This is due to the fact that
such elaboration is done via asymptotic and, hence, ap-
proximate methods, such as Lie techniques [9]. While the

FIG. 4: First three stationary eigenstates of a free particle
traveling through a “crystal” formed of multiple ponderomo-
tive barriers of Gaussian shape E = E0 exp(−z2/L2). Shown
is Φ(z) (shaded) and the longitudinal energy E|| vs z (solid)

(energy units are v̂2; E0 = 0.001, Λ = 103, L = 0.05, the
distance between the individual barriers is 8L).

limited nature of these methods is often failed to mention,
it is crucial for understanding particle dynamics at finite
ε. Therefore, in addition to the academic interest in the
showing that very general classical systems exhibit quan-
tum effects, capturing the effects we describe here will be
a challenge to the existing computational and analytical
techniques in plasma kinetic theory.

The work is supported by DOE contract DE-AC0276-
CHO3073.
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